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S U M M A R Y  
A method is presented for computing the scattering from any size of totally reflecting body by the inversion of one 
finite matrix, provided that the shape of the body can be derived by inwardly deforming a finite part of a body from 
which the scattering is known expficitly. Only the size of the deformed surface is limited by available computational 
facilities. The method, which is applicable to acoustic and electromagnetic scattering problems, is illustrated by apply- 
ing it to a deformed infinite wedge for both electric polarization (Dirichlet problem: sound-soft boundary in acoustics), 
and magnetic polarization (Neumann problem: sound-hard boundary in acoustics). Numerical results are presented 
to demonstrate the convergence of the computations, 

1. Introduction 

Explicit solutions to scattering problems can be obtained for totally reflecting bodies having 
certain simple shapes [-1], [2]. The geometrical theory of diffraction, derived from asymptotic 
forms of certain explicit solutions, can be used to predict approximately, but often with im- 
pressive accuracy, the field scattered from a wide class of bodies [-3]. However, for dealing with 
penumbra and caustics the usefulness of the geometrical theory of diffraction is severely limited 
[4]. Also, because of the asymptotic nature of the theory, the separation between two diffract- 
ing vertices or edges on a body must be appreciable if the secondary diffracted field (the field 
diffracted from the second vertex or edge due to a ray diffracted from the first) is to be obtained 
accurately. Many writers [1], [4], [5], [6] have suggested improvements to the geometrical 
theory of diffraction for penumbra and caustics, but the asymptotic nature of the theory re- 
mains. 

To be able to evaluate a suggested improvement to the geometrical theory of diffraction, 
accurate values should be available for the field scattered from bodies of basically simple 
shape, which have been deformed in many different ways. The computational procedure 
described here allows such accurate values to be obtained. The procedure is illustrated by 
applying it to a deformed wedge (Sections 4 and 5). 

Using a digital computer, the field scattered from a body can be calculated using an integral 
equation over the body [7], [8], [9], [10]. The integral equation gives the scattered field as the 
radiation from sources induced in the surface of the body [11], 

The discussion is now specialized to monochromatic electromagnetic scattering of angular 
frequency co and wave number k. The time dependence exp (loot) is suppressed in the analysis. 
When a perfectly conducting body having a surface o- is present in an incident field Uo, the total 
field U surrounding the body is the sum of the incident and scattered fields. Thus, [8] 

U = U o + {A} f f O(s)f2(z)ds f2(z) - exp(-ikz) ' 4nz ' (1) 

where z is the distance from any point s on o- to the point at which U is observed and 0 (s) is 
the surface current density on a, given by 

g(s) = ~ X n  (a) 

where • is the outward unit normal vector at s. The vector operator {A } is the scalar/~ when U 
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represents the vector potential A, is ( -  i#c 2 (k 2 + VV .)/co) when U represents the electric field E, 
and is (VX) when U represents the magnetic field H. The symbols # and c denote respectively 
the permeability of the medium and the velocity of electromagnetic waves. The wave number is 
assumed to have a vanishingly small, negative, imaginary part in order to ensure that the 
scattered field behaves in a physically acceptable manner at infinity. 

Richmond [8] distinguishes between two approaches to solving (1); either the scattered field 
in a certain region, or the surface current density, may be expressed as a series of mode functions 
requiring the determination of unknown coefficients. These coefficients can be obtained by 
inverting a matrix derived from (1) and (2), and using the boundary conditions on o-. Since the 
matrix to be inverted must be finite, the moment method [12] chosen to represent the surface 
current density over the surface (usually the method of subsections) can only involve a finite 
number of mode functions. Because of this approximation to the surface current density, the 
scattered field given by (1) will not ensure that the total field is zero at all points in the interior 
of the body, and may, at certain frequencies, cause a resonant field to exist in the interior [9]. 
Therefore, it is important to note that even though the use of boundary conditions on the 
surface a will suffice to give a close approximation to the scattered field using the method of 
moments, it is necessary to use the extended boundary conditions [9] to be certain of obtaining 
accurate values for the surface current density on o-. 

The largest scattering body which can be dealt with by the method of moments is limited by 
the available computing facilities, since larger matrices are needed for larger bodies [7], [8], 
[12]. This paper introduces a technique, called the surface current replacement technique 
(Sections 2 and 3), based on the integral equation approach and using the extended boundary 
conditions, which enables the scattering from any size (even infinite) of perfectly conducting 
body to be determined by inversion of one finite matrix, provided that the shape of the body 
can be derived by inwardly deforming a finite part of a body from which the scattering is known 
explicitly. The technique involves expressing both the scattered field in a certain region, and 
the surface current density over the deformed part of the surface, in a series of mode functions 
with unknown coefficients. Hence, the size of only the deformed part of the surface is limited by 
available computing facilities. This technique is of the perturbation type, but solutions are 
obtained by the non-iterative procedure of inverting one finite matrix. 

Although this paper deals explicitly with electromagnetic scattering, since the deformed 
wedge problems discussed in Sections 4 and 5 are two-dimensional, the results apply directly 
to acoustic scattering [13]. It is straightforward to transform the argument of Sections 2 and 3 
into acoustic terms. 

2. Surface Current Replacement Technique 

The surface current replacement technique is based on the realization that any closed, perfectly 
conducting body with surface o- can be regarded electromagnetically as a region of zero field 
completely enclosed by radiating currents on a. In the presence of an incident field, the function 
of these currents is to ensure that the total field internal to a is zero at all points. 

Consider a particular surface S in the presence of an incident field U0 (Fig. 1 (b)). The closed 
surface S is separated into two open surfaces e and 7. Let surface currents be impressed on 
so as to cancel exactly the surface currents already existing there. If ~ is closed by a surface fl 
to form a new closed surface $1 (Fig. l(a)) and the surface current density on $1 is adjusted until 
there is zero field at all points inside $1, then, electromagnetically, the total configuration is that 
of a perfectly conducting body with surface S~ in the presence of the incident field Uo. This 
argument is expressed analytically in Section 3. 

If the field scattered from S, when it is illuminated by Uo, is known then the surface current 
density o rs  is known. The problem of S~ illuminated by Uo therefore resolves into the problem 
of S~ illuminated by the field radiated by the known, impressed surface current distribution 
over ~. The advantage of attempting to solve this latter problem, rather than the original of S~ 
illuminated by/-To, is that the sources of the incident field are now contained in a finite volume 
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enclosing c~. Thus, external to a volume enclosing ~ and fi, the field may be written in an eigen- 
function expansion with unknown coefficients, where each term in the expansion, besides satis- 
fying the boundary conditions on ?, must represent an outward travelling wave in order to 
satisfy the radiation condition at infinity. This knowledge of the form of the field enables 
integrals over the surface ? to be evaluated analytically. 

t 
t _ xCt 

"r y 

" - x . . . J  sl 

(a) (b) (c) 
Figure 1. Deformation of surface S into surface $1. 

3. General Formulation 

Consider a perfectly conducting closed body, having surface $1, present in an incident field U o 
(Fig. l(a)). The total field Ut is given by [11] 

= Uo f I3) 
where h (s) is the surface current density on $1 and 

s l =/~ ~ ~. (4) 

In order to evaluate U1 it is convenient first to treat two other problems : 
(a) Consider a perfectly conducting, closed body with surface S, such that 

s = ~ u ? (5)  

illuminated by an incident field Uo (Fig. 1 (b)). The total field U is given by 

v =  Uo+ (at f (  (6) 
3 3 S 

where i(s) is the surface current density on S. 
(b) Now consider $1 illuminated by the field radiated by a surface current dentity [ - i ( s ) ]  

on ~, which is external to $1, as shown in Fig. 1(c). The total field U2 is given by 

1.72=-{A} f f  i(s)f2(z)ds+{A} f fslf(s)f2(z)ds (7) 

where f(s) is the surface current density on $1. 
Adding (6) and (7), and using (5), gives 

U+Uz= Uo+{A} f f k(s)~2(z)ds, (8) 
33  Sl 

where the total surface current density k(s) on $1 is given by 

k(s)=f(s)+i(s), on V, (9) 

= f(s) , on ft. 
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From the argument of Section 2 

U 1 = U 2 = 0, inside $1, (10) 

U = 0, inside S. (11) 

Thus the problem represented by Fig. l(a) is identical with the problem represented by the 
combination of Figs. l(b) and l(c). Hence, 

U 1 = U-+- U 2 (12)  

and it follows from a comparison of (3) and (8) that 

k(s) =- h(s).  (13) 

4. The Deformed Wedge 

The surface current replacement technique is illustrated by applying it to calculating the scat- 
tering from an infinite wedge, the apex of which has been deformed (Fig. 2). The wedge is in a 
homogeneous isotropic medium and is illuminated by a plane wave which is normalized so that 
its magnetic field strength has unit magnitude. A detailed analysis is presented for electrically 
polarized fields (electric field parallel to z-axis, Dirichlet problem; sound-soft boundary in 
acoustics). Only the essential steps are noted for magnetically polarized fields (magnetic field 
parallel to z-axis ; Neumann problem; sound-hard boundary in acoustics) since the analytical 
approach is similar to that used for electrically polarized fields. 

/ /  

," ! k_ \ ", 

Figure 2. Deformed wedge, z-axis perpendicular to paper. 

Since the problems considered in this section are two-dimensional there are no variations 
with z, so that the surface integrals in Sections 1 and 3 can be transformed into line integrals 
in the p, ~o plane. Denote the geometrical cross-section of an arbitrary cylindrical body by F. 
The surface current density g (s) on the body is independent of z so that it is convenient to intro- 
duce the notation 

g (s) = G(L) (14) 

where L denotes arc length along the periphery of the cross-section. Recognizing that % as 
defined in (1), can be written as (R 2 +z2) ~, where R is the distance from any point on F to the 
point at which t ~  field is observed, it follows that [13 
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IS f g (s) f2(z)ds = G(L) g2(z)dzdL = -- i - oo -~- G(L)H(oZ)(kR)dL (15) 

where H(o2)(kR) is the Hankel function of the second l~ind of order zero. 
The surface of the deformed wedge, denoted by C 1 in Fig. 2, and the first derivative of the 

surface in the direction of Ca, are taken to be continuous at all points on C1. 

Electric Polarization 

Consider a perfectly conducting infinite wedge having cross-section C, occupying the region 
191 6 )~, illuminated by an electrically polarized plane wave (Fig. 2). Use vector potential 
notation, 

ktH = VXA, A = ~A (16) 

where ~ is the unit vector in the z-direction. The symbol U, which was used in Section 3, is 
replaced in this subsection by A. The incident field is 

A o =  ~ # exp (ikp cos ( ( p - Z -  r �9 (17) 

The field surrounding C is [1] 

4#v ~ i "~ A = - ~  ,.. ,  Y,,,(kp) sm (nv[q)-z]) sin (nvO), Z< 9 <  27r-Z,  (18) 
n = l  

v = re/2 Ire - X], (19) 

where Jp (y) is the Bessel function of the first kind of argument y and order p. 
All surface currents are directed parallel to ~. Using the notation introduced in (14), make 

the further definition 

G(L) = ~G(L). (20) 

For the undeformed wedge, define the apex to be the origin of L, with positive L on the right- 
hand side of the wedge. Using (2), (6), (14), (18) and (20) it follows that 

I(C) - - 4 v  ~ (sgn (C))"nvW a,~(kfLr) sin (nvO) . (21) 
kL ,=1 

In Fig. 2 the cylindrical polar' coordinates r and 0 describe fl which is the cross-section of 
the deformed part of the wedge. The maximum value of r is a. Thus, the sources of A2 are 
contained within the circle p = a and A 2 is entirely outgoing for p > a. A representation of A2, 
which satisfies the radiation condition at infinity and the boundary conditions on the faces of 
the wedge, is then 

A2=~/~ ~, a.H(,~)(kp) sin (nv[q0-Z]) ,  p >a ,  Z=< r 2rt-) /  , (22) 
n = l  

where the coefficients a, are yet to be determined. 
Since the vector operator {A} reduces in this subsection to/~, it follows from (7), (14), (15) 

and (20) that 

f~ ii2 f F(L)H~o2)(kR)dL (23) A2 = 4i# a I(L)H(~ - -~ cl 

Denote the total arc length of fl by 2X. Denote by O that point on fl which is distant X 
from both ends of fl, when distance is measured along/8. Define O to be the origin of L for the 
deformed wedge. A convenient, complete representation for F(L) over fl is 

F(L) = ~, b,,Jm(kL), hL] < X ,  (24) 
h i = 0  
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where the coefficients b~ are yet to be determined. Note that (24) is consistent with the acknow- 
ledged behaviour of surface currents ; that any oscillations exhibited by F(L) are likely to have 
a spatial period close to the free-space wavelength [13]. 

The form ofF(L), on 7, is found from (22), using (2) and (16), to be 

- - 1  
F(L) = k[lglZ2+a] 21= a,(sgn(g))"+lnvH~,2)(k[lLI--X+a]), ILl >X.  (25) 

The two representations (22) and (23), for A 2 can be equated on any circle p = b, provided 
that b > a. It is convenient to express A 2 as given by (23), in a trigonometrical Fourier series for 
the range 0 < qo < 2n. Thus, 

A2 = Bg- + 2 ~ [B + cos (pep) + Bp- sin (pq))], p = b, (26) 
p = l  

where the B~ are functions of b. Expanding (23), using Graf's addition theorem for Bessel 
functions [14], gives 

By = -~ (pa)(kb) ~ [F(L+X-a)+__F(-L-X+a)]Je(kL)dL 

+ 4(kb) f? [F(L + X - a )  + - F ( - L - X  +a)]H(PZ)(kL)dL 

js 1 3 sin (PZ) 

+ H(p2'(kb) f X F(L)Jp(kr) C~ ] x sin (pO) dE . (27) 

Since, from (10), A2 is identically zero inside C1 (that is for Lq~l < z, p > a) it follows from (22) 
and (26) that 

#v cos ~ tatH}~)(kb) 2n-1 B~ = k~ sin(PZ),=lz-" (tv)2 p2 , t--- 2n (28) 

When (21) and (25) are substituted into (27), all the resulting integrals can be evaluated 
analytically [14]. When (27) and (28) are equated, all factors depending on b cancel out..On 
using (24) there results 

a.D.p + ~ b,. C,.p = Yp (29) 
n = l  m=O 

where p is a non-negative integer, and 

.(2) (ka)Jp(ka)- H~ (ka)Jp+ ~ (ka D.p = nvq.(pz) -H("2~ (ka) _ ka-,~+a 
( n v ) 2 _ p 2  , 

(30) 

k f x j,,(kL)Jp(kr)q,,_l(pO)dL ' 
- x  

(31) 

4v 2 ~ q.(pz)nW sin (nv~)[ka J~v+l (ka) 4(ka)- J,~(ka)4+ t (ka) 
.= 1 k (nv)2_ p2 

J,~ (ka) J, (ka) ] 
nv+p J 

q2,(~0) = s in(e) ,  q2,-1(~0)= cos(~0). 

(32) 

(33) 
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To obtain numerical solutions, the two summations in (29) are truncated; the summation 
over n to N terms and the summation over m to M terms. In (29), the coefficients of a, and b,~ 
form a square matrix, of order IN + M],  which will be denoted by A. The series on the right- 
hand side of (32) is rapidly convergent so that the Yp can be computed straightforwardly. Thus, 
the a, and bm are the elements of the column matrix A - a y, where Y is the column matrix having 
Yp for its elements. The accuracy with which a, and b,, are obtained increases with [N + M].  

Since the surface Ca of the deformed wedge and its first derivative in the direction of Ca are 
continuous at all points on Ca, the edge conditions [1] indicate that the surface current density 
is continuous at all points on CI. The right-hand sides of (21), (24) and (25) are absolutely 
continuous within their ranges of applicability so that K(L), the total surface current density 
(refer to (9), (14) and (20)), is absolutely continuous everywhere on C1 except at the junctions 

between fl and ?. The continuity of K(L) at ILl = X  is ensured by combining the equations 

, nv HC~)(ka)+ ~ (+_l)mb,,j,~(kX) = (_+ 1) "+ a. ka 
n = I  m = O  

- 4  ( + 1 )  "§ 
v2 ni nv 

,=a ka J.~(ka)sin(nvO) (34) 

with (29). The elements of A are obtained from the left-hand side of (34) as well as the left-hand 
side of (29). Similarly, the elements of Y are obtained from the right-hand side of (34) as well 
as the right-hand side of (29). 

The total field Aa surrounding Ca is the sum of A and A2. When the a. have been evaluated 
both A and A2 are readily determined, from (18) and (22) respectively. 

Magnetic Polarization 

The symbol U, which was used in Section 3, is replaced in this subsection by the magnetic 
field strength H where 

H = ~H.  (35) 

The incident field is 

(36) Ho = exp (ikp cos (q) - Z -  t))), 

and the field surrounding C is [1] 

H = 2v cos cos  
n = 0  

where e~ is the Neumann factor [14]. A suitable representation for H 2 is 

H2 = ~ a~H(,2)(kp) cos (nv[(p-g]), p >a, Z<= (p<= 2 ~ -  Z . 
n = 0  

;(< q~ < 27t - Z, (37) 

(38) 

It is seen from (2) and (35) that all surface currents are directed perpendicular to ~. Using 
the notation introduced in (14), make the further definition 

G(L) = LG(L) (39) 

where L is the unit vector, perpendicular to ~, tangent to the surface supporting the current 
and directed clockwise. 

The analysis is similar to that for electric polarization. The vector operator {A} has the 
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form (VX). It is again convenient to use the expression (24) for F(L), for ILl < X. The coefficients 
a, and bm are found to satisfy 

anD.p+ ~ bm Crop = Yp, (40) 
n : O  n/=O 

where p is a non-negative integer, D o o  = i/v and 

I_I-I(.2~'(ka)Jp(ka) rr(2) 1 (ka)Jp(ka)- H~.2)(ka)Jp+ l (ka!~ 
D.p = (-1)"+ l q.(pz) p I_- nv~pp - ka'*"~+ ~ - @ - - ~  ] '  

(41) 
k 

/* x 

j J,. (kL) [.Iv +1 (kr) qm ([P + 1 ] O- 6) + J._l (kr) q,. ([p - 130 + 6)] dL, CroP= f - -  l)m 4 - X  

(42) 

VJ.v(ka) Jp(ka) 
rp = 2vp ~ e.(-1)"q.(pz)i"~ cos(nvO) I nv+p 

. = 0  

4~ +1 (ka) J. (ka) - J.~ (ka) J. +1 (ka) ] 
- ka (nv)2 _ p2 (43) J 

where the q.(q~) are defined in (33), and r, 0 and 6 are defined in Fig. 2. The continuity of 
K(L) at ILl = X  is ensured by combining the equations 

(++_l)"a.H~.~'(ka) - ~ (+_l)mb,.Tm(kX)=-2v ~ (+l)"~.J.v(ka):cos(nvO)i "~ (44) 
n=0 m=0 n=O 

with (40) when constructing the matrix A used for the evaluation of the a. and b.,, which as 
before are the elements of the column matrix A - 1 Y. 

5. Discussion of Computations for Deformed Wedge 

The field scattered from any deformed wedge can be obtained from (29) and (41). The Crop 
are the only quantifies which have to be recalculated when the deformation is changed. 

Notice that (29) and (41) are independent of b, the radius of the circle on which the two 
representations, (27) and (28), for the trigonometrical Fourier coefficients of the field are 
equated. Since the derivation of (27), and a similar but unquoted equation used in the analysis 
for magnetic polarization, is based on/71 being identically zero for p = b, I~oJ < )~, it follows that 
(,2,9) and (41) include the consequences of the extended boundary conditions. Analytic con- 
tinuation arguments [9-1, [10] ensure that U~ = 0 everywhere inside C1. 

The a, and bm for certain round-topped wedges (circular deformation shown in Fig. 3) have 
been computed. It has been shown in Section 4 that the a, and b m can be obtained in general 
by inversion of a matrix of order [-N + 3//]. However, the symmetry of the round-topped wedges 
permits the symmetric and anti-symmetric parts of the field to be separated on inspection. 
Consequently, the a, and bm can be obtained by the inversion of two matrices of approximate 
order I N +  M]/2, which results in significant computational economy. 

For the round-topped wedges the convergence of some coefficients is shown in Fig. 3. 
Since it is clear that convergence is occurring it can be deduced that the lower order modal 
components of [72 predominate. Thus, accurate values for the surface current density can be 
obtained by truncating the summation on the right-hand side of (24). 

Fig. 3 also illustrates the effect of including explicitly the continuity of the surface current 
density at the junctions between/3 and ?. The initial convergence of the a. is seen to be more 
rapid. 
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Figure 3. Convergence of the a, field coefficients for the round-topped wedge. Legend i M = 7, 
M= 5 ; . . . . . . .  M= 5 and the continuity of the surface current density at the junctions of/J and 7 has been e.xplicitly 
included. 

In  all the c o m p u t a t i o n s  which  have  been done,  the  ra te  of  convergence  of  the  a ,  and  bm 
(with n, m, N and  M)  indica tes  tha t  accura te  resul ts  a re  ob t a inab l e  by invers ion of  finite matr ices .  
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